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In this paper the Hermitian momentum operator on the usual Hilbert space is constructed for
the Wigner-Dunkl quantum mechanics utilizing a symmetric Dunkl derivative. The inverse of the
derivative is shown to exhibit different realization on the subspaces of even and odd functions. The
continuity conditions at finite discontinuities of symmetric potential is investigated. As an example,
the finite symmetric square well is discussed in detail.

I. INTRODUCTION

The foundation of quantum mechanics is still an attractive field of contemporary physics. Most notable, the
2022 physics Nobel prize was awarded for experiments with entangled photons [1]. For some recent theoretical
work let us mention [2–4].

Another field of increasing interest is related to deformations of standard textbook quantum mechanics.
One of such deformations, which is the subject of the present work, goes back to Wigner and Dunkl, and
nowadays attracts much attention among the physics community. Being a bit more explicit, in 1950 Wigner
[5] investigated the effects of the reflection operator on the spectrum of the harmonic oscillator. Shortly after,
Yang [6] introduced a modified Heisenberg algebra by explicitly introducing the reflection operators with a
deformation parameter resulting in a modified momentum operator. Independently of these studies, when
investigating polynomials with discrete symmetry groups, Dunkl [7] obtained similar modified momentum
operators. More recently such deformations of the momentum operator or Heisenberg algebra has attracted
much attention in quantum mechanical system, often called Wigner-Dunkl quantum mechanics (WDQM). For
example, in refs. [8–10] the Dunkl oscillator was investigated in two and three dimensions. The 2-dimensional
Dunkl oscillator was also studied via the su(1, 1) algebraic approach in [11]. The 3-dimensional non-relativistic
Dunkl -Coulomb problem and its superintegrability were investigated in ref. [12, 13]. In a recent work [14]
the current authors revisited the Wigner-Dunkl quantum mechanics from a supersymmetric point of view,
introduced a generalized shape invariance and provided exact solutions for a certain class of SUSY potentials.
Dunkl derivatives with two and three parameters are investigated in refs. [15–17].

The momentum operator in WDQM has the problem of being not Hermitian on the usual Hilbert space
L2(R, dx) equipped with the standard Lebesgue measure dx on R. Hence, one usually introduces a weighted
measure dµ(x) curing this defect. The objective of the current work is two-fold. First we introduce a modified
momentum operator for WDQM which is Hermitian on the standard Hilbert space L2(R, dx). Secondly, we
want to study the spectral properties of WDQM for the finite potential well, which is one of the basic textbook
problems not explicitly but graphically or numerically solvable. In doing so we need to investigate the continuity
conditions of wave functions in WDQM at locations where the potential has a finite discontinuity.

This paper is organized as follows. In section 2 we recall some basic properties of WDQM paving the way
for the construction of a modified but Hermitian momentum operator, which is explicitly discussed in section
3 in details. This section also touches upon the modified continuity equation for WDQM. In section 4 we
deal with our second objective, that is, we explicitly study the continuity conditions of energy eigenfunction
at points where the external potential exhibits a finite discontinuity. As an explicit example we then solve the
WDQM eigenvalue problem for a finite potential well in section 5, and conclude in section 6 with some final
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remarks summarizing our findings.

II. PRELIMINARIES ON DUNKL QUANTUM MECHANICS

As pointed out above, the first deformation of Heisenberg’s algebra involving the reflection operator is due
to Wigner [5] and Yang [6]. What they proposed was a deformed commutation relation between position
operator x̂ and linear momentum operator p̂ of the form

[x̂, p̂] = i (1 + 2νR) . (1)

In the above ν is an arbitrary real parameter with ν > − 1
2 . R represents the reflection (or parity) operator

acting on functions f defined on the real line as (Rf)(x) = f(−x) and thus is a non-local operator. Obviously,
the parity operator anti-commutes with both, the position operator and the linear momentum operator. That
is

Rx̂ = −x̂R , Rp̂ = −p̂R . (2)

Let us note that throughout the paper we will use units where Planck’s constant is set to unity, i.e. ℏ = 1.
The algebra (1) is usually referred as the Wigner algebra.

In the coordinate representation the momentum operator is given by

p̂ =
1

i
∂Dunklx , (3)

with Dunkl derivative [7] defined as

∂Dunklx = ∂x +
ν

x
(1−R) . (4)

Here ∂x = ∂
∂x denotes the usual derivative with respect to the coordinate x.

Quantum mechanics involving the Dunkl derivative was originally introduced in [8] by putting the stationary
Schrödinger equation in the form (

− 1

2m

(
∂Dunklx

)2
+ V (x)

)
ψ(x) = Eψ(x) (5)

It is well known [8] that the momentum operator (3) is not Hermitian when working in the usual Hilbert space
H0 = L2(R, dx) equipped with the standard Lebesgue measure dx on the real line. However, it is Hermitian
on Hν = L2(R, dµ) equipped with a weighted measure dµ(x) = |x|2νdx. For some applications within Hν we
refer to refs. [7–13].

The objective of the following section is to construct a Hermitian momentum operator on the standard
Hilbert space H0. We will also present a modified continuity equation for WDQM.

III. HERMITIAN MOMENTUM IN DUNKL QUANTUM MECHANICS

From now on we will exclusively work in the Hilbert space H0 equipped with the usual Lebesgue measure
dx. That is, the inner product of two pure states (or wave functions) ϕ and ψ is given by

(ϕ, ψ) =

∫ ∞

−∞
dxϕ∗(x)ψ(x) . (6)

and the expectation value of an observable represented by a Hermitian operator Â in a given quantum state
ψ is defined as

⟨Â⟩ψ =

∫ ∞

−∞
dxψ∗(x)Âψ(x) (7)

Obviously the momentum operator p̂ = −i∂Dunklx is not Hermitian due to the additional term ν
ix showing up

in (3). However, with the non-Hermitian p̂ we can construct a Hermitian momentum operator via

P̂ =
1

2

(
p̂+ p̂†

)
, (8)
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whose coordinate representation is given by (Note: On H0 the reflection operator is Hermitian as (ϕ,Rψ) =
(Rϕ,ψ)).

P̂ =
1

i
Dx =

1

i

(
∂x −

ν

x
R
)
. (9)

This operator was first introduced in [6]. From now on we refer to the anti-Hermitian operator Dx as the
symmetric Dunkl derivative.

The Hermitian momentum operator (8) obeys the Wigner algebra

[x̂, P̂ ] = i (1 + 2νR) . (10)

We also note the anti-commutation relations

{R, x̂} = 0 = {R, P̂} . (11)

Then, the time-dependent Hermitian Dunkl-Schrödinger equation for an external scalar potential V may be
represented by

i
∂

∂t
ψ(x, t) = Ĥψ(x, t) =

(
P̂ 2

2m
+ V (x)

)
ψ(x, t) . (12)

Or more explicitly

i
∂

∂t
ψ(x, t) =

[
− 1

2m
D2
x + V (x)

]
ψ(x, t) (13)

=

[
− 1

2m
∂2x −

1

2m

(
−ν

2

x2
+

ν

x2
R

)
+ V (x)

]
ψ(x, t) . (14)

With the usual ansatz

ψ(x, t) = e−iEtψ(x) , (15)

the stationary Hermitian Dunkl-Schrödinger equation with potential V reads

Ĥψ(x) =

(
− 1

2m
D2
x + V (x)

)
ψ(x) = Eψ(x) . (16)

In this paper we will exclusively consider symmetric potentials only, that is, we request

(RV )(x) = V (x) ⇐⇒ [R, V (x̂)] = 0 . (17)

For such symmetric potentials the Hamiltonian commutes with the reflection operator. In other words, we can
find simultaneous eigenfunction ψE,s of the Hamiltonian Ĥ and the reflection operator R with

ĤψE,s(x) = EψE,s(x) and RψE,s(x) = sψE,s(x) . (18)

Note that s ∈ {−1, 1} with s = 1 for even states and s = −1 for odd states. This implies that we can split
our Hilbert space H0 into two subspaces H+ and H− belonging to even and odd states, respectively. In other
words, R can act as a Z2-grading operator on H0 = H+ ⊕H− [18].

In concluding this section, let us establish a generalized continuity equation for solution of the Hermitian
Dunkl-Schrödinger equation by utilizing the symmetric Dunkl derivative (9),

∂ρ(x, t)

∂t
+DxJ(x, t) = 0 . (19)

Here

ρ(x, t) = |ψ(x, t)|2 (20)
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is the usual time-dependent probability density for an arbitrary solution of (12), which is normalized to unity∫ ∞

−∞
dx ρ(x, t) =

∫ ∞

−∞
dx |ψ(x, t)|2 = 1 (21)

and thus obeys

d

dt

∫ ∞

−∞
dx ρ(x, t) = 0 . (22)

However, for the time-dependent probability current we choose a generalized definition via the symmetric
Dunkl derivative (9),

J(x, t) =
1

2mi
(ψ∗(x, t)Dxψ(x, t)− ψ(x, t)Dxψ

∗(x, t)) . (23)

We leave it to the reader to verify that the continuity equation (19) is fulfilled as well as the Ehrenfest relations

d

dt
⟨x̂⟩ψ =

1

m
⟨P̂ ⟩ψ ,

d

dt
⟨P̂ ⟩ψ = −⟨V ′(x)⟩ψ . (24)

Note that for symmetric V we have [P̂ , Ĥ] = [P̂ , V ] = −i[∂x, V ] = −iV ′(x) as [R, V ] = 0.

IV. CONTINUITY CONDITIONS OF WAVE FUNCTIONS

In this section we will study the continuity conditions which must be obeyed by the wave function at points
where the potential has a discontinuity.

To begin with, we first investigate the inversion of the symmetric Dunkl derivative. As is evident, Dx

does not have the ordinary integral as its inverse operation. Thus, we propose for an arbitrary piecewise
differentiable function F , the ansatz∫ x

dy w(y)DyF (y) =

∫ x

dy w(y)

(
∂y −

ν

y
Ry

)
F (y), (25)

where we have introduced a symmetric weight function w(x) = w(−x). It turns out that we need to consider
the cases of odd and even F separately.
Case (RF )(x) = F (x):
In this case the function F is even and integration by parts of (25) results in∫ x

dy w(y)DyF (y) =

∫ x

dy w(y)

(
∂y −

ν

y

)
F (y)

= w(x)F (x)−
∫ x

dy

(
w′(y) +

ν

y
w(y)

)
F (y) .

(26)

With the choice

w(x) = |x|−ν , (27)

the last integral vanishes and we get

|x|ν
∫ x

dy |y|−νDyF (y) = F (x) . (28)

In other words, in the subspace H+ the inverse of the symmetric Dunkl derivative is given by the integral
operator

D−1
x (·) = |x|ν

∫ x

dy |y|−ν(·) (29)
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Case (RF )(x) = −F (x):
As in the previous case we do an integration by parts and arrive at∫ x

dy w(y)DyF (y) =

∫ x

dy w(y)

(
∂y +

ν

y

)
F (y)

= w(x)F (x)−
∫ x

dy

(
w′(y)− ν

y
w(y)

)
F (y) .

(30)

Now we need to choose

w(x) = |x|ν (31)

to make the last integral disappear and get

|x|−ν
∫ x

dy |y|νDyF (y) = F (x) . (32)

Hence, on the subspace H− the inverse of the symmetric Dunkl derivative is given by the integral operator

D−1
x (·) = |x|−ν

∫ x

dy |y|ν(·) (33)

We are now in a position to study the continuity conditions of the wave function at locations where the
symmetric potential has discontinuities, say at x0 = ±a with a > 0. The time-independent Hermitian Dunkl-
Schrödinger equation reads

D2
xψE,s(x) = 2m(V (x)− E)ψE,s(x), (34)

where V (x) is symmetric and has symmetric finite discontinuities at x0 = ±a, that is,

lim
ε→0

V (x0 + ε) ̸= lim
ε→0

V (x0 − ε) , (35)

with both limits being finite.
We will now apply the inverse operator D−1

x on both sides of eq. (34). For doing so we need to discuss the
two case s = +1 and s = −1 separately.

For an even wave function ψE,+1 its symmetric Dunkl derivative DxψE,+1 is an odd function and we need
to use the integral operator (33). Applying this operator on both sides of (34) at x = x0 + ε and x = x0 − ε
and taking the difference leads us to

[|x|ν (DxψE,+1) (x)]
x=x0+ε
x=x0−ε =

∫ x0+ε

x0−ε
dy |y|ν(V (y)− E)ψE,+1(y) (36)

In the limit ε → 0, the right-hand side of above equation vanishes. Observing that the weight function
w(x) = |x|ν is continuous at x0 ̸= 0, the continuity condition for the symmetric Dunkl derivative DxψE,+1 is
given by

lim
ε→0

(DxψE,+1)(x0 + ε) = lim
ε→0

(DxψE,+1)(x0 − ε) . (37)

For an odd wave function ψE,−1, we do the same steps as above, however using integral operator (29) which
leads us to [

|x|−ν (DxψE,−1) (x)
]x=x0+ε

x=x0−ε
=

∫ x0+ε

x0−ε
dy |y|−ν(V (y)− E)ψE,−1(y) (38)

Again the weight function w(x) = |x|−ν is continuous at x0 ̸= 0 and taking the limit ε → 0 we arrive at the
same continuity condition now applied to odd wave function.

lim
ε→0

(DxψE,−1)(x0 + ε) = lim
ε→0

(DxψE,−1)(x0 − ε) . (39)

Let us now take a look at the probability current J . For a stationary solution the probability density ρ does
not depend on time and the continuity equation (19) imposes the condition

(DxJ)(x) = 0 . (40)
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Note that for even as well as odd solution ψ the probability current (23) will always be odd. Hence, we apply
(29) to (40) at both positions, x = x0 + ε and x = x0 − ε, and arrive at the continuity condition of the
probability current

lim
ε→0

J(x0 + ε) = lim
ε→0

J(x0 − ε) . (41)

Let us emphasize that this only holds for stationary states with a well defined parity. Together with the
continuity condition for the symmetric Dunkl derivative, the above also implies continuity of the wave functions
at x0.

Thus, we have two continuity relations for the simultaneous eigenstates ψE,s of parity operator R and
Hamiltonian Ĥ with symmetric potential possessing a finite discontinuity at x0:

lim
ε→0

ψE,s(x0 − ε) = lim
ε→0

ψE,s(x0 + ε) , (42)

lim
ε→0

(DxψE,s)(x0 − ε) = lim
ε→0

(DxψE,s)(x0 + ε) . (43)

In concluding this section, let us briefly look at the behavior of the wave function near the origin, that is at
|x| ≪ 1. For a well-behaved finite potential V near the origin, the ansatz ψ ∼ xα results in α = ν for the even
solutions and α = ν + 1 for odd solutions. That is, for |x| ≪ 1 we have

ψE,+1(x) ∼ |x|ν , and ψE,−1(x) ∼ x |x|ν , (44)

which are both square integrable at x = 0 if ν > −1/2.

V. THE FINITE POTENTIAL WELL

As an explicit example, let us consider a finite potential well with depths −V0 in a finite range −a < x < a.
That is, we consider the symmetric potential

V (x) =

{
−V0 |x| < a

0 |x| > a
, (45)

where both parameters, V0 and a are positive real numbers. Since V (x) is symmetric, it is sufficient to consider
the region x > 0 only. Here we will limit our discussion to bounded solution with −V0 < E < 0.

First, let us look at solutions of the stationary Dunkl-Schrödinger equation in the range 0 < x < a,

(D2
x + k2)ψE,s(x) = 0, (46)

Here we have set

k =
√

2m(V0 + E) > 0 (47)

and eq. (46) can be written as

∂2xψE,s +

(
ν(s− ν)

x2
+ k2

)
ψE,s = 0 (48)

where we have used RψE,s(x) = sψE,s(x). With the help of the replacement ψE,s(x) =
√
xu(x), the above

equation is turned into Bessel’s differential equation

x2u′′ + xu′ +

(
k2x2 −

(
ν − s

2

)2)
u = 0, (49)

whose linearly independent solutions are given by Bessel functions of first and second kind, denoted by
Jν− s

2
(kx) and Yν− s

2
(kx), respectively. The latter one we have to discard as it does not fulfil the bound-

ary condition (44). In conclusion, the even (s = 1) and odd (s = −1) solutions in the range x ∈ [−a, a] are
given by

ψE,+1(x) = A+

√
|x|Jν− 1

2
(k|x|) , ψE,−1(x) = A−

x√
|x|
Jν+ 1

2
(k|x|) , (50)
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which obey conditions (44). The positive real constants A± are determined at a later stage via the normaliza-
tion and continuity conditions (42) and (43).

Now let us consider the case where x > a. In this case the stationary Dunkl-Schrödinger equation reads

(D2
x − κ2)ψE,s(x) = 0, (51)

where we set

κ =
√
2m|E| > 0 . (52)

The same substitution as in the previous case now results in the modified Bessel equation with the two linearly
independent solutions given by the modified Bessel functions of first and second kind, denoted by Iν− s

2
(κx)

and Kν− s
2
(κx), respectively. They exhibit for large argument the following asymptotic behavior

Iα(z) =
ez√
2πz

(
1 +O

(
z−1

))
, Kα(z) =

√
π

2z
e−z

(
1 +O

(
z−1

))
, (53)

and hence only the solution of the second kind is admissible. Therefore, we are led to the even and odd solution
in the range |x| > a

ψE,+1(x) = B+

√
|x|Kν− 1

2
(κ|x|) , ψE,−1(x) = B−

x√
|x|
Kν+ 1

2
(κ|x|) , (54)

where as above the two positive real constants B± are to be determined in the following.
With the explicit eigenfunctions at hand we can now determine the corresponding eigenvalues by utilizing

the two continuity conditions (42) and (43) at x0 = a. We will discuss the even and odd case separately.

A. Eigenvalues for even solutions

For the even wave function the continuity conditions result in the two equation

A+Jν− 1
2
(ka) = B+Kν− 1

2
(κa) and A+kJν+ 1

2
(ka) = B+κKν+ 1

2
(κa) . (55)

Eliminating the two constants A+ and B+ we arrive at

k

(
Jν+ 1

2
(ka)

Jν− 1
2
(ka)

)
= κ

(
Kν+ 1

2
(κa)

Kν− 1
2
(κa)

)
. (56)

Together with κ =
√
2mV0 − k2 these relations determine admissible values for k. Hence, the solutions denoted

by kn, n = 1, 2, . . . , n0 provide us with the eigenvalues En,+1 = −V0 +
k2n
2m . Note that n0 ist the maximal

n where En,+1 remains negative. As above equation (56) cannot be solved analytically we provide here a
graphical solution by introducing dimensionless variables ξ = ka > 0, b = a

√
2mV0 > 0 and real functions

f+(ξ) = ξ

(
Jν+ 1

2
(ξ)

Jν− 1
2
(ξ)

)
, g+(ξ) =

√
b2 − ξ2

Kν+ 1
2

(√
b2 − ξ2

)
Kν− 1

2

(√
b2 − ξ2

)
 . (57)

The energy eigenvalues corresponding to the even solutions are then determined by the solutions ξn = akn of
f+(ξ) = g+(ξ).

The function f+(ξ) is independent of parameter b and has positive zeros of order one at αν+ 1
2 ,p

with
p = 1, 2, 3, . . ., where αµ,p denotes the p-th zero of the Bessel function Jµ(αµ,p) = 0. For ξ ≪ 1 it behaves like
f+(ξ) ∼ ξ2/(2ν + 1). In addition, f+(ξ) has simple poles at αν− 1

2 ,p
with p = 1, 2, 3, . . .. The function f+ is

shown in figure 1 in purple color. Let us also note that the zeros of the two Bessel functions used in definition
of f+ are interlaced as follows

αν− 1
2 ,1

< αν+ 1
2 ,1

< αν− 1
2 ,2

< αν+ 1
2 ,2

< αν− 1
2 ,3

< · · · . (58)

This implies that between two zeros of f+ we always have a simple pole.
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Now let us take a look at the function g+(ξ). Its behaviour is dominated by the factor
√
b2 − ξ2

from which we conclude that ξ ≤ b. At ξ = 0 it starts with a positive value given by g+(0) =
bKν+ 1

2
(b)/Kν− 1

2
(b) > f+(0) = 0. For −1/2 < ν < 1/2 it vanishes at ξ = b. More precisely, it behaves

like1g+(b− ϵ) ∼ Γ(1/2+ν)
Γ(1/2−ν)2

ν+1/2b1/2−νϵ1/2−ν . For ν > 1/2 the function g+ terminates at ξ = b with a positive
value g+(b) = 2ν − 1. In figure 1 we have plotted g+ for ν = 0.2 and ν = 0.7 for various values of parameter b.
The number of even bound states increases as V0 increases but decreases as ν increases. Indeed, for the range
|ν| < 0.5

αν+ 1
2 ,p

<
√
2mV0a2 < αν+ 1

2 ,p+1, (59)

we have n0 = p + 1 even bound states, where we set αν+ 1
2 ,0

= 0. In other words for |ν| < 0.5 at least one
even bound state exists. However, if ν > 1/2 the number of bound states might be one less as the function g+
terminates at ξ = b with positive value g+(b) = 2ν − 1 > 0. Hence, if f+(b) < 2ν − 1 the last eigenvalue is not
present. Hence, for b sufficiently small there may not exist any even bound state all.

B. Eigenvalues for odd solutions

In the case of odd eigenfunctions the continuity conditions at x = a result in

A−Jν+ 1
2
(ka) = B−Kν+ 1

2
(qa) , kA−Jν− 1

2
(ka) = −κB−Kν− 1

2
(qa) , (60)

which gives us the relation

k

(
Jν− 1

2
(ka)

Jν+ 1
2
(ka)

)
= −κ

(
Kν− 1

2
(κa)

Kν+ 1
2
(κa)

)
. (61)

As before we introduce two functions f− and g− given by

f−(ξ) = −ξ

(
Jν− 1

2
(ξ)

Jν+ 1
2
(ξ)

)
, g−(ξ) =

√
b2 − ξ2

Kν− 1
2

(√
b2 − ξ2

)
Kν+ 1

2

(√
b2 − ξ2

)
 , (62)

and the eigenvalues of the odd bound states are determined from the intersection of these two functions.
Noting that f− is related to f+ via f−(ξ) = −ξ2/f+(ξ), we observe that the positive zeros of f− are now

located at the poles of f+ and the poles of f− are now at the positions of the positive zeros of f+. We also
observe that f− starts with a negative value, that is, f−(0) = −(2ν + 1).

The function g− is also related to g+ via g−(ξ) =
(
b2 − ξ2

)
/g+(ξ). As above this leads to the bound ξ ≤ b.

At the origin it starts out with the positive value g−(0) = bKν− 1
2
(b)/Kν+ 1

2
(b) > 0 and vanishes at ξ = b. To

be more explicit, for −1/2 < ν < 1/2 it behaves like g+(b − ϵ) ∼ Γ(1/2−ν)
Γ(1/2+ν)2

−ν+1/2b1/2+νϵ1/2+ν , whereas for
ν > 1/2 the behavior is of the form g−(b− ϵ) ∼ 2bϵ

2ν−1 . Hence for b < αν− 1
2 ,1

we even have no odd bound state.
In the general case the number of odd bound states increases as V0 increases. Indeed, for

αν− 1
2 ,p

<
√

2mV0a2 < αν− 1
2 ,p+1 . (63)

we have p odd bound states. In figure 2 we have plotted g− for ν = 0.2 and same values of parameter b as in
figure 1.

VI. CONCLUSION

The first objective of the present work was the construction of a Hermitian momentum operator of WDQM
in the standard Hilbert space with the usual measure. This was achieved in section 3 by symmetrizing the

1 Note that for small z > 0 and µ > 0 the modified Bessel function behaves like Kµ(z) ∼ Γ(µ)
2

(
2
z

)µ. For µ < 0 we may use the
relation Kµ(z) = K−µ(z).
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non-Hermitian momentum operator and expressing it in terms of the symmetric Dunkl derivative Dx. In
section 4 we first constructed the inverse operator D−1

x and found that it has different realizations in the
subspace of even and odd functions. As any function can be decomposed into its even and odd part, this
operator is trivially extended to the full Hilbert space. The symmetric Dunkl derivative also led us to a
modified continuity equation and Ehrefest’s theorem in WDQM.

The inverse operator D−1
x then enabled us to study the continuity conditions of wave functions within

WDQM in the presence of a discontinuous symmetric potential. These were presented in eqs. (42) and (43). As
an explicit example the finite potential well was studied. As in ordinary quantum mechanics the eigenfunctions
can be found in closed form but the associated eigenvalues may only be obtained in a numerical or graphical
way. It was found that for − 1

2 < ν < 1
2 there always exists an even ground state. However, for ν > 1

2 and
V0 sufficiently small this potential well may not posses any bound state. The number of even and odd bound
states increases with increasing V0 but decreases with increasing deformation parameter ν as the positive zeros
of the Bessel functions Jν± 1

2
(ξ) move to the right on the ξ-axis with increasing index ν.
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FIG. 1: Plot of function f+ and g+ as defined in (57) for ν = 0.2 on the left and for ν = 0.7 on the right. The function
f+ is shown in Purple and g+(ξ) is shown for b = 1 in Blue, b = 4 in Pink and for b = 7 in Brown.
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FIG. 2: Plot of function f− and g− as defined in (62) for ν = 0.2 on the left and for ν = 0.7 on the right. As in figure
1, function f+ is shown in Purple and g+(ξ) is shown for b = 1 (Blue), b = 4 (Pink) and b = 7 (Brown).
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